On a Class of Implicit-Explicit Runge-Kutta Schemes for Stiff Kinetic Equations Preserving the Navier-Stokes Limit
نویسندگان
چکیده
Implicit-explicit (IMEX) Runge-Kutta (RK) schemes are popular high order time discretization methods for solving stiff kinetic equations. As opposed to the compressible Euler limit (leading order asymptotics of the Boltzmann equation as the Knudsen number ε goes to zero), their asymptotic behavior at the Navier-Stokes (NS) level (next order asymptotics) was rarely studied. In this paper, we analyze a class of existing IMEX RK schemes and show that, under suitable initial conditions, they can capture the NS limit without resolving the small parameter ε, i.e., ε = o(∆t), ∆t = o(ε), where m is the order of the explicit RK part in the IMEX scheme. Extensive numerical tests for BGK and ES-BGK models are performed to verify our theoretical results.
منابع مشابه
2-stage explicit total variation diminishing preserving Runge-Kutta methods
In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...
متن کاملSemi - Implicit Runge - Kutta Schemes Forthe Navier - Stokes Equations
The stationary Navier-Stokes equations are solved in 2D with semi-implicit Runge-Kutta schemes, where explicit time-integration in the streamwise direction is combined with implicit integration in the body-normal direction. For model problems stability restrictions and convergence properties are studied. Numerical experiments for the ow over a at plate show that the number of iterations for the...
متن کاملSegregated Runge-Kutta methods for the incompressible Navier-Stokes equations
In this work, we propose Runge-Kutta time integration schemes for the incompressible Navier-Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both...
متن کاملImplicit-explicit Runge-kutta Schemes for Stiff Systems of Differential Equations
We present new implicit-explicit (IMEX) Runge Kutta methods suitable for time dependent partial differential systems which contain stiff and non stiff terms (i.e. convection-diffusion problems, hyperbolic systems with relaxation). Here we restrict to diagonally implicit schemes and emphasize the relation with splitting schemes and asymptotic preserving schemes. Accuracy and stability properties...
متن کاملOn positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations
We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to high dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 73 شماره
صفحات -
تاریخ انتشار 2017